20,951 research outputs found

    Holographic Van der Waals phase transition for a hairy black hole

    Get PDF
    The Van der Waals(VdW) phase transition in a hairy black hole is investigated by analogizing its charge, temperature, and entropy as the temperature, pressure, and volume in the fluid respectively. The two point correlation function(TCF), which is dual to the geodesic length, is employed to probe this phase transition. We find the phase structure in the temperatureβˆ’-geodesic length plane resembles as that in the temperatureβˆ’-thermal entropy plane besides the scale of the horizontal coordinate. In addition, we find the equal area law(EAL) for the first order phase transition and critical exponent of the heat capacity for the second order phase transition in the temperatureβˆ’-geodesic length plane are consistent with that in temperatureβˆ’-thermal entropy plane, which implies that the TCF is a good probe to probe the phase structure of the back hole.Comment: Accepted by Advances in High Energy Physics(The special issue: Applications of the Holographic Duality to Strongly Coupled Quantum Systems

    The Advantage of Playing Home in NBA: Microscopic, Team-Specific and Evolving Features

    Full text link
    The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called home advantage phenomenon date back to the 70's and every since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the microscopic dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased 0.16 points per minute (on average the seasons 2004-05 to 2013-14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only 0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon.Comment: Accepted for publication in PLoS ON
    • …
    corecore